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Metastability of the d-Dimensional Contact Process 
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We prove that the d-dimensional supercritical contact process exhibits meta- 
stable behavior, in the pathwise sense. This is done by proving the property of 
thermalization and using Mountford 's  theorem. We also extend some previous 
results on the loss of  memory of the process. 
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1. I N T R O D U C T I O N  

This paper  is concerned with the contact  process for an arbi t rary dimen- 
sion d e N \ { 0 }  restricted to F N =  { - -N ,  .... N} a, N e N ,  starting with all 
sites (in FN) occupied. This is a cont inuous- t ime Markov  process on 
{ 0, 1 } rN with flip rates at a state ~ e { 0, 1 } ~' given by 

f 
l if ~ ( x ) =  1 

c(x, .~) = ~ UY) if ~(x) = 0 
_V E F N 

IIx-yll = 1 

if x ~ F N and .c(x, ~) = 0 if x e F~v, where 2 ~ E + is a fixed parameter  and 

Ilzll = ET~ - ~ Z'. i i - , I  for 
We are interested in the metastable behavior  for large N and for 

2>2 , . (d ) ,  the critical value for the unrestricted contact  process in d 
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dimensions, in a sense that we make precise below. The restricted process 
must eventually die out for all 2 ~ R+ and we investigate the time it takes 
for this to happen. 

In order to investigate metastability we adopt the method proposed by 
Cassandro et  al., cl~ where the pathwise approach was introduced. In that 
paper they showed the above result for sufficiently large 2 in the one- 
dimensional case. 

Informally, the phenomenon of metastability can be described as 
follows: The system is in a metastable situation if it stays in an apparent 
state of equilibrium during a long random time and in particular if the 
statistics of the trajectories stabilizes in this situation, but at the end of a 
memoryless random time (or asymptotically exponential random time), 
this statistics has on abrupt break of coherence and stabilize around the 
true state of equilibrium at 3 0 . 

The metastable behavior of the supercritical one-dimensional contact 
process was proven by Schonmann. ~2~ Moreover, he proved that this does 
not happen in the subcritical case. Mountford 131 proved that for the 
d-dimensional supercritical contact process, restricted and initially fully 
occupied, the suitable normalized time to die out converges to an exponen- 
tial random variable of mean one as N tends to infinity. 

The goal of this paper is to show that the supercritical contact process 
presents a metastable behavior in any dimension. This is done by proving 
the property of thermalization for the d-dimensional case, i,e., when the 
process is out of its equilibrium situation the temporal means stabilize 
close to the expectation of the statistics of the trajectories in some fixed 
probability distribution on the configurations of the system. Metastability 
then follows from Mountford's results ~3~ on the time for the process to die 
out. 

This extension of the thermalization property to arbitrary dimensions 
is derived from the fast loss of memory of the process, which we obtain 
using some results from Bezuidenhout and Grimmett? 4~ The concept of 
loss of memory was implicit in ref. 1 and was later used in Galves et  al. ~5~ 

to study the asymptotic distribution of the time of first occurrence of an 
anomalous density of particles in a large, fixed region of the space for the 
supercritical one-dimensional contact process. Here we extend the concept 
to establish our theorem. 

The paper is organized as follows: In Section 2 we introduce the 
notation to be used in this work and state the metastability theorem. In 
Section 3 we prove general results about the loss of memory of the contact 
process, which are used in Section 4 to prove the main theorem. In 
Section 5 we prove that the phenomenon of metastability does not hold for 
2 < 2,.(d). 
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2. NOTATIONS AND RESULTS 

We consider the contact process as being derived from a collection 
of Poisson processes defined in the sites x e  ~d, as in the representation 
introduced by Harris. ~61 This representation enables us to couple contact 
processes with different initial configurations. For a construction and proofs 
of the existence and uniqueness of the process defined by the parameter 2 
see, for instance, Durrett ~7~ and LiggettJ 8~ 

We use the notation ~;,,i tt). t >10} to describe the process restricted I "~ FN ~, " 
q to F N C T J  starting from the configuration ~le{0, 1} r^', i.e., ~r~(0) -- r/. 

Restricted means that Poisson processes defined in F~, are not considered. 
Given q ~ { 0, 1 } r;v, we define the hitting time of the trap state, i.e., the 

J/ empty configuration, starting from r/ by T ~  = inf{ t t> 0: ~rN(t) = ~ } .  For 
notational convenience we write {4"(t): t >~ 0} for the unrestricted process 
and in this case for the initial condition 17~ {0, 1} ~'~ we define T '~ 
analogously. 

We call f :  { 0, 1 } z.~__, R a cylindrical function if there is a finite set 
A c7/d such that f ( q ) = f ( q m A )  for any configuration q~ {0, 1} z,~. The 
support o f f  is defined as the smallest set of 71 d which has this property and 
write A ( f )  for this set. 

Given a real number b > 0, N e  t~, and a cylindrical function f ,  we 
define the temporal mean o f f  with respect to the process {~ri~(t): t>~0}, 
as the measure-valued process { Ab(S,f):N S >i 0} given by 

1 f s + b  
AN(s' f )  = -b 3.,. f(~r~i(t)) dt 

where s is the instant of the beginning of the masurement and b the time 
interval of observation. We can now state the metastability theorem: 

For any d>~ 1, 2>2,.(d), and a cylindrical function f there is an 
increasing sequence of positive real numbers { b(N, d): N>~ 1} such that the 

{AbIN,,I)(S~ [ F . . . .  N ~  process N T rx], f ) .  s >1 0} converges in distribution, as or, 
to a Markovian jump process {A(s): s~>0} defined by 

v if s < T  
A(s) = 

6~ if s > T 

where T is an exponential random time of mean one, v is the extremal non- 
trivial invariant measure of the unrestricted contact process, and 3 o is the 
Dirac c~-measure concentrated in the empty configuration. 
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3. LOSS OF M E M O R Y  OF THE PROCESS 

For any0~<q~<l  let 

A(FN, q)=ftl�9 1}zu: ~, q(x}~q[l"N[) 
X ~  FN 

where IF~I = ( 2 N +  1) d is the cardinal of the set /"N- 
In order to obtain our results we will consider contact processes with 

different initial configurations, using an appropriate coupling established 
when both processes are constructed in the same probability space 
following the same collection of Poisson processes considered in the Harris 
representation. 

L a m i n a  3.1.  Let d~>l and 2>2c(d) .  For  any 0 < q ~ < l  there are 
L = L(d, 2) �9 t~ and c = c(d, 2) �9 (0, 1 ) such that, for every N~> L and every 
q �9 A(F N, q), 

P(T'l~ru= C~)>/ 1 --exp{ --cq(2N+ 1) a - I  } 

Proof. The case d =  l follows Theorem (3.29), p. 303 of ref. 8. 
Suppose d > l  and for r � 9  fixed let Dr= {z�9 IZal <~r, i= 1,..., d} 
be a disc in Za. 

Bezuidenhout and Grimmett (4) have shown that there is a finite 
disc D,. = D and a positive integer L > r such that for all 2 > 2,.(d) we have 

D P{~t -L.Ly'-' • survives in [0, oZ)} = y > 0 

For N>~L and tl�9 fixed, we can find ~ # ( ~ I I ~ F  N such 
that 

,~ W,,,I ~ ), l } [([ >~ max ((4L)d_ 1(2N + 1 

where [(I is the cardinal of (, such that the sets x + ( - L ,  L ) a - ' x  Z, when 
x �9 (, are disjoint. Let x / for 1 = O, 1 ..... Ill - 1 be an enumeration of the sites 
o f ( ,  namely ( =  {xl�9 l = 0  ..... I lL -  1}. 

Note that there is a strictly lower bound, say p(d, 2, r, h), for the 
probability that at any time h > O, there is a fully occupied disc Dr + x / in 

x-I 
the process {~/-L+.,.,(t): O<~t<~h}, x / � 9  constructed by the coupling 
described before with the process {~'~(t): t>~O}. We now show that there 
is a lower bound for the probability of the event { ~r survives in [ O, oo)}. 
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Defining Bd, L(X ~) = X t +  ( --L, L) d- t x 7/, both processes 
vl 

{ ~,,,,.,.,~(t): t~>0}, '~" x"' ~ ( {~,,.a.e,,~(t): t>~0}, l:~m, x/, 

which are restricted versions of the process starting from q with the same 
parameter 2 > 0, have independent evolutions. 

Denoting by {~~ t~>0} the unrestricted process starting at the 
origin of 7 d, we observe that for each x t ~ ( the following inequality holds: 

x-/ 
P{~.LI_,.,~(t) survives in [0, oz)} 

= P{~~ survives in [0, oz)} 
0 >~ P{ ~B,~.ao~(t) survives in [0, ~ ) ,  r176 = Dr for some 0 ~< h ~< t} 

=Tp(h,r,d, 2)>O 

where the first equality follows from the translation invariance property of 
the contact process and the second from the Markov property. 

To complete the proof, note that from the attactiveness of the contact 
process it follows that 

v I { r in [0, co)} 

for any x~E ( implies that 

{~'l~'rN(t) survives in [0, az)} 

,:! 
and by the construction of the process {~,,Ll.,.,l(t): t t> 0} we have that 

P{ T"~ r" = co} >/P{~:(t)survives in [0, ~ )}  

{ x, } i> P U {~B,,.a.,.,~(t) survives in [0, oo)} 
! ~< I,.;I - l 

{ ,-, } = 1 -  1-[ P{~B~.a,'~(t)=~ f~176 
/~< I q  - 1 

~>l- I-[ (l-),p(h,r,d, 2)) 
I ~ I r  I 

>/1 - e x p {  -Tp(h, r, d, 2)I(I} 

{ Ir~lq } 
/> 1 - e x p  -Tp(h, r, d, 2) (4L)a_ ~(2N+ 1) 

= 1 - exp{  - cq (2N+ 1) e- I  } 

where c=),p(h, r, d, 2)(4L) l - d e  (0, 1). | 

822/83/5-6-28 
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The next lemma estimates the rate, at time t, of the loss of memory of 
the process as N grows. 

L e m m a 3 , 2 .  Letd~>l  and2>2 , . (d ) .  F o r a n y 0 < q ~ < l , N ~ > l ,  and 
q and ~EA(I 'N,q) ,  there are ~=~(d ,  2 ) ~ [ l ,  oo), c=c(d,  2, q)E(O, oo), 
and C =  C(d, 2)~ [ 1, oo) such that for every t>~ctN, 

P(~'~(t) = ~r FN)>/1 -- C I/'NI exp{ - c t }  

Proof. It is enough to prove the result for q E A(FN, q) and ( = 7/'( 
Given t >/1, it follows from Lemma 3.1 that there are positive con- 

stants L and c', independent of N, such that 

P(3yE [ - L t ,  Lt]'( q (y )= 1, T y= oo) 

= P( T 'In[ -L"L']'t = oO) 

>~ 1 --exp{ --c'q(2Lt + 1) a -  l} 

Since ( 2Lt + 1 )'~- ~ >>, 1 + ( d -  1 ) Lt, we obtain that 

1 - e x p { - - c ' q ) 2 L t +  1) '1-' } >~ 1--exp{--c 'q(1 + ( d -  1)Lt)} 

= l - - exp{ - -c ' q}  e x p { - c ' q ( d -  1) Lt} 

~> 1 - exp{ -c 'q t}  

Note that in the case d =  1 the inequality above is a consequence of 
Theorem (3.29), p. 303, of ref. 8. 

Define for any yeY'~ and t~>0 the coupled region K] '=  
~."(t)u(~a(t))  '. We have, for any t~> 1 fixed, that 

{ 3),~ [ - L t ,  Lt]  'l, q(y)= 1, T"= co} 

c U {~"'(t)=~z"(t)inK~ ', T " = ~ }  
I '  E q 

c {~'~(t)= Cz"(t)in FN}  W { F  N c~ K]', TY= oo} 

where the last set is for one choice y with the smallest norm. 
Therefore 

P(~"(t) = ~z"(t) in FN) 

~> 1--exp{--c 'q t}  --  P(  I" N c/:. K}', TY= oo) 
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Since 

P(FuC K]" T"'=~)=P( U 

it follows from the invariance by translations of the contact process that 

P(Fuge K~"T"'=c~)=P( U {xeK~176 
A" E ~ q- l"  

~< IFNI P(x r g ~ T O = c~ ) 

Durrett  and Griffeath ~9~ obtained some results which, after the break- 
through of Bezuidenhout and Grimmett, ~4~ are valid for the unrestricted 
d-dimensional contact process. We use here a result which ensures that 
there are positive constants a, & and C, independent of N, such that 

P(xCK ~ T - " = ~ ) ~ < ( ~ e x p { - ? t }  for Ilxll<at (3.1) 

Note that Ilxll ~ Nd for all x ~ FN, and therefore we have 

Nd P(F N r K]', T-"=o~)<~IFNI Cexp{--? t}  forall  t > - -  
a 

Consequently, there are constants a, c, C such that 

P(~'l(t) = ~z~(t)in FN) 

>/1 --exp{ --c'qt} --IFNI Cexp{ - e t }  

Nd 
~>I--IFNI Cexp{--ct}, forall  t > - -  

a 

where c = m a x { c ' q , ? } ~ ( 0 ,  oo) and C = m a x { C ,  1 } E [ l , ~ ) .  Putting 
~=max{d /a ,  1} e [1, ~ ) ,  we get the desired conclusion. | 

4. PROOF OF THE T H E O R E M  

Following the method employed by Durrett and Schonmann, ~~ 
Mountford ~3} has recently shown the following result. 

Theorem (Mountford). Let d>~ 1 and 2>2,.(d);  we have 

E[ Trr'i~] �9 EXP(1) when N---, 
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This result is proven using the method introduced in ref. 4 together 
with ideas on orientated percolation in Durrett. ~ 

To state the thermalization of the process, we start by defining, for 
each y ~ Za, the translation operators on cylindrical functions by 

(ryf)( l l )=f( t l l -")) ,  where q ~ : ' l ( x ) = q ( x - y )  

Given a cylindrical function f and N, L ~ N, with N > L, let 

I jI f I .N(L ) = { y  ~ 7/a: A(t.,,f) = [ - - N  + L, N -  L]a c~ 77 a} 

and write Ev ( f ) =  I f dv to denote the expectation o f f  with respect to v. 

T h e o r e m  4.1. Let d>~ 1 and 2 >  2,.(d). Then there is an increasing 
sequence of positive real numbers {b(N, d), N>>. 1}, such that: 

(i) We have 

b( N, d) 
- -  --* 0 when N ~ c~ 

(ii) For any e > 0  and a cylindrical function f ,  there is 
L = L(d, 2, ~, f )  ~ N such that 

P( max max 
IEZ yEI.IIII, N�91 

O<~I<FN 

N IAb~N,a~(lb(N, d), r , . f )  - E,,(f)l >e )  ~ 0 

when N--, Go, where 

FN FN = max{ I~ ~1: Ib(N, d) < T ru } . 

Proof. Since Trr~ is almost surely finite, for any real, positive number 
b(N, d), FN is a well-defined and finite random variable with values in t~. 

If b(N, d) satisfies condition (i), if follows from Mountford's theorem 
that 

P [ F N = 0 ]  ~ 0  when N - - * ~  

Let us now assume that (b(N, d), N>~ 1 ) is a sequence satisfying (i). 
For e > 0, f cylindrical, k E ~, and y ~ 2U given, consider the events 

N = IA~N.d~(kb(N ' d), . Fv(f) I Bk. ;, [ z , . f ) - -  > e l  
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Then, for any m >/1, L/> 0, 

[ Nc] P FN>~ 1, n N 
l < ~ k < F N  yEIAI f I ,  N IL )  

fJ, ]] -- P [ F N = j ]  P g U N - -- B~ ,,, F ^ , = j  
j =  1 . k = I 3,~ IA(I) ,N(L 

I?=', 1 >~P[I <~FN<~m] - P g BkN,,, F N = j  
j =  I y~. Idl[I .N(L) 

>~P[l <<.F~<m] 

- j ( 2 N +  1) d max max P [B  k ..... FN=j]  
j =  1 I <~k < j  3 '~ ,~II ILN(L)  

>~PI-I <FN<~m] 
N - m Z ( 2 N +  1)amax max max P[Bk.;,, FN=j]  (4.2) 

j>~l  I < ~ k < j  3, E / , t i l l  N(L)  

For any r/~ { O, 1 } z,~, consider K~ the set of coupled sites at time t, 
defined as before by 

K7 = U {~:x(t) w ( ( za ( t ) ) " }  = ~' , ( t )  w (~zu( t ) ) ,  
.x" E t 1 

We have, for yEI~(fI, N(L), that the event 

[ K ~  [ - N + L ,  N - L ] d n  77 '/] 

for some z ~ [ -  N + L, N--L]'+(~ 77d implies (is a subset of) 

- FN ~,1 r. , . f (#ru(t))=ryf(r  (t))] 

Choose L = L ( d , A , e , f ) m N  such that ] z ~ [ - N + L ,  N - L ] a n 7 7  d 
with T: = co. Fixe one z with the smallest norm. Then we have for t < Trr~, 
k < j ,  y m I,Jtf,,N(L), and N > L the following inequality: 

N P[Bk ,,, FN=j]  

---- P [  [ A ~ u , d ) ( k b ( N  , d), r y f )  - H:v(J') [ > e, F N = j ]  

[ A~(N d)(kb(N, d), 1 f(k+ I,b(N.d) Z" dt e 
<" P L " rYf)  b(N, el),kb(N.d) ryf(~  (t)) > ~  or 

1 f(k+l) b~U,d) Z" -- E,,(N) >~, FN= j ]  
kb(N.a) r , .f(~ (t)) dt e 



1234 Simonis 

Trajectory by trajectory on [ F N = j ] ,  if k < j ,  y~IALf),N(L), and 
N > L, we have 

1 ~ ( k + l ) b ( N , d )  ~,l 

A~N.m(kb(N, d), ~.,.f) b(N, d) l~kbiU.dl z,.f(~. (t)) dt 

<~ ltr,,,-t.r T : =  ~-I dt, 

Defining the events 

N 
Ck ,  y 

L)N.L  
k = 

Cf= 

N and as P[ Ck,.,, ] 

where Ilfll = sup f (q)  
q ~ Z d 

F+] 

Z ' v / ( ~  ( t ) )d t -Ev ( f )  >~J 

r b(N, d) oo llFx_LCK~.T:=~ 1 dt> 

C kUo 

is independent of y, we have 

PCB~.,., ru  =j]  ~< P[ C~.'] + PCD~_ 'z  ] 

Inequality (4.2) asserts that condition (ii) is true when condition (i) is, 
and furthermore we can find a sequence {re(N, d), N>~ 1} such that: 

(a) 0z[1 <~FN<~m(N,d) ] ~ 1 
(b) m2(N,d)(2N+ l)d(maxk>~, P [ C  N] +maxk~> , p [ D N ' L ] ) ~ 0  

when N ~ or. 
Condition (a) may be written as 

Hz[ TrN -< m( N, d) b ( N , d ) ] ~ l  when N--* ov ~t FN 

and using Mountford's theorem, we can write it as 

m(N, d) b( N, d) 
~_[ T r~' ] 

Cv 

Using the notation 

~ w h e n  N ~ c~ 

q/L(b(N, d)) = max [P[ C~ r] + max P[D N'L ] 
k>~l k~>l 
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and including part (i) of the theorem, all we have to do now is to find 
L~  1~ and two sequences such that, as N-+ ~ :  

(a) [re(N, d) b(N, d)]/nz[ r^, T rN ] --+ oo. 

(b) m2(N, d ) ( 2 N +  1 ),/~bL(b(N, d) --* 0. 

(c) b(N, d)/IF[ Try ]  ~ O. ~r 

| t  is easy to show that 

lim (~:[ r.,, ) - ,  )2,/ Trx ] ( 2 N +  1 = 0  
N~o'2 

Therefore if ~bL(b(N, d)) ~< OIFNI/b(N, dL where C =  C(e,f) is a positive 
constant, we have that 

r u  
re(N, d) = tF[TrN ] ]1/5 

(UuTiy2'q 
b(N, d) = (IF[ Trr,V] )9/ '~ + 1) ̀//5 

are solutions of (a)-(c) above, concluding the proof. We thus only have to 
show the next proposition. 

P r o p o s i t i o n  4.3. Let d~> 1, 2 > 2,.(d). For any e > 0 and J ' a  cylin- 
drical functions, then there are L = L(d, 2, e, f )  > 0, N = N(e, f )  > L, and 
C= C(e, f )  such that 

C I/'NI for all N~>.N tbL(b(N, d) ) <~ b(N, d) 

Proof. First we prove that there is a positive constant C, = C](e, f )  
such that 

max F(C N) ~< C, IrNI 
k >11 b(N, d) 

For k E N, consider the random variables 

1 f [k+  l)b 
X~ = ~ Jkb . f (~"( t ) )  dt -- ~_,.(f) 

We have for k>~l and b(N,d)>o~N, where ~=~(d ,  2 ) ~ [ l ,  ov) is 
given by Lemma 3.2, that 
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e[ x~' N.,,, ] 

2 Ilfll :{k+l�91 
~ < - - j  p({z"(t) 4: ~"(t) in A(f))  at 

b(N, d) kb~ ,̂,a~ 

2 lllll f =b(N,d)  Jkb~N.a~ qo,,V Jp(~zJ(t)r  

Applying Lemma 3.2, it follows that there are c =  c(d, 2 )e  (0, or) and 
C = C(d, 2) e [ 1, oo ) such that 

2 Ilfll f,*+l,b,N.,,, E[X~'N'a'] <~ b(N, d) kb, N.a, C [FN[ exp{ --ct} dt 

~< 2 Ilfll c IFNI 
b(N,d)c 

exp{-kcb(N,  d)} ~<2C' ILfll. IFNI 
b(N, d) 

for any k/> 1, where C' = C/c. 
Using the Markov inequality, we have that 

max,~ P(C~V) = max P , > ~  (Xkb(N,d) ~> 2)  ~< max,~j 2E[ X b(N'a' ] e  

4C' Ilfll. IFNI C,(e,f) IFNI ~< 
eb( N, d) b( N, d) 

where C 1 = C,(e, f )  =4C '  Ilfll/e. 
The D~ v'L terms can be controlled is an analogous way. For this, 

choose L=L(d ,  2, e , f )  large enough such that there is z r  
N - L ] a c ~  y_a, with T--= oo. Fixe one _- with the smallest norm. 

For k e IN, let 

Yk' = ~  IIr^'-L=K;,T . . . .  I dt 

It follows that 

E[ ybIN. dLL] 1 r I b(N'd) P(FN_L r K~, T:= ~ )  dt 
-k J b(N,d) .o  

1 rN"' ( ) 
- P U { x C K ~ , r : = ~ }  at 

b( N, d) ~o .,~ r,~-L 
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The translation invariance property of the contact process implies that 

P O dt 
" b ( N ,  d )  "o .,'~-- + r~,- t 

So we have, for some constant aE(0,  co) given, that 

= P U {xq~K ~ V~ m} at " k J b(N,d) ~o ..... +r^,-L 

1 fb'N'"' ( +0 ) + b(N, d---~JIr.,,_,.I/,, p {xCK~ TO= oo} at 
x E 2 N -  L 

Using (3.1), there are ae(O, so l  ~ ( 0 ,  co), and Ce(O, oo), such that 

Yk ] < ~ ~  [E[ b~N,d),L IFN-L{ II-'N LI C b'N''l~ 
+ ~  l,r~,_,.,/,,ot,v,,,,~ Cexp{ - ( t }  dt oh(N,  d) 

I-rN_LI ~< 
ab( N, d) 

IFNI 
ab(N, d) 

where C' = c' = 2 max{ 1/a, C/g}. 
It follows that 

CIFN[ exp{  [FN--LI} 
-~ (b( N, am) a 

c IFul C' [r^,l 
(b( N, d) b( N, d) 

( 4) max P~D~ t-) = m a x  P ]lfl] y~,^,,m,L> 
k ~ l  k~>l 

~< max 
k>~l 8 

~_[  b ( N ,  d L L  Yk ] 4 I]fl[ 

C2(e, f ) I / M  ~< 
b( N, d) 

where C2(e,f)=C'41lfl l /E.  Putting C = m a x { C i ,  C2}, the result 
follows. | 

5 .  S U B C R I T I C A L  C A S E  

We prove now that the theorem of Mountford is false for 2 < 2,.(d). 

T h e o r e m  5.1. Let d~> 1 and 2<2,.(d). For any sequence {?N" N~> 1 }, 
T;~/y N does not converge to an exponential random variable. 
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Proof. Our method is essentially that employed for Theorem 6 of 
Schonmann.~'- 

We show that 

p(Tr~u<<.tlnNa)-*O as N- - ,ov  if t < l  

and that there exists K =  K ( 2 ) >  1 such that 

P(~rNTr'V-<tlnNd)--*l-- as N--* oe if t > K  

The first part  follows from the fact that 

T ~Uu >~ Sru = max ~ 
,~: ~ F N  

where ql[ is the instant of the first occurrence of the Poisson process with 
rate one defined in x ~ Z a. So 

P(Tr~-N< t In N a) <~ P(Sru<~ t In N a) 

= [ 1 - exp{ - t In N a} ] 12U+ )~" 

1 ( 2 N +  1 ),/] (2N+ 
= 1 ( 2 N + l )  a -~7// ] 

) } ,I 

--,0 

as N---, m i f t <  1. 
To prove the second part, we use the result (1.13) in Bezuidenhout 

and GrimmetUlzl  It defines the distance function 

d 

O ( ( x , t ) , ( y , s ) ) = l t - s l +  ~ Ixi-yi l  for ( x , t ) , ( y , s ) s Z a x N  
i = l  

For r > 0  the ball S ( r ) =  { n e Z a x  N: 6(0, n)~<r} and its surface 0 S ( r ) =  
{ n e 7/'/x E: 6(0, n ) =  r} are also defined. Considering those definitions, it is 
then proved that for 2 < 2,.(d) there exists ~ = ~ , (2 )>0  such that 

P{0-- ,aS( r )}  ~<exp{-rq/(2)} forall  r 

where A --, B means that there exist a s A and b E B such that a and b are 
in the same connected component  of a (random) graph lying entirely 
within R a+ 1. See Section 2.1 of ref. 12 for details, which include the topol- 
ogy used and the definition for an event to be determined by the configura- 
tion inside a region of R a+ 1. 
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For t > K = m a x { 1 ,  [~b(2)]-'} we have that 

P{ Trr~> tin N a} <~ P{ ~r"(K In N a) # ~ }  

<~ }rul P{~~ N')r 

~< Irul P{o--, OS(Kln Nd)} 

<~ IFNI exp{ --(Kln N d) r 

Irul *0 as N--* N KdO ( 2 ) 
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