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Metastability of the d-Dimensional Contact Process

Adilson Simonis'
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We prove that the d-dimensional supercritical contact process exhibits meta-
stable behavior, in the pathwise sense. This is done by proving the property of
thermalization and using Mountford’s theorem. We also extend some previous
results on the loss of memory of the process.

KEY WORDS: Contact process; metastability: loss of memory; thermaliza-
tion; infinite-particle systems.

1. INTRODUCTION

This paper is concerned with the contact process for an arbitrary dimen-
sion de N\{0} restricted to I'y={—N,., N}, NeN, starting with all
sites (in I') occupied. This i1s a continuous-time Markov process on
{0, 1} 7 with flip rates at a state { € {0, 1} %' given by

1 if {(x)=1
An0=92 Y Uy if {x)=0
vely
v =yl =1
if x eFN and ¢(x,{)=0if xel'y, where 2R is a fixed parameter and

Izl =X, |z for z€ Z"
We are mterested in the metastable behav1or for large N and for
A>2.d), the critical value for the unrestricted contact process in d

! Universidade de Sdo Paulo, Instituto de Matematica e Estatistica, CEP 05508-900,
Sao Paulo, Brazil; e-mail: asimonis(@ime.usp.br.
1225

0022-4715/96/0600-1225809.50/0 : 1996 Plenum Publishing Corporation



1226 Simonis

dimensions, in a sense that we make precise below. The restricted process
must eventually die out for all Ae R, and we investigate the time it takes
for this to happen.

In order to investigate metastability we adopt the method proposed by
Cassandro et al.,'"’ where the pathwise approach was introduced. In that
paper they showed the above result for sufficiently large A in the one-
dimensional case.

Informally, the phenomenon of metastability can be described as
follows: The system is in a metastable situation if it stays in an apparent
state of equilibrium during a long random time and in particular if the
statistics of the trajectories stabilizes in this situation, but at the end of a
memoryless random time (or asymptotically exponential random time),
this statistics has on abrupt break of coherence and stabilize around the
true state of equilibrium at 4.

The metastable behavior of the supercritical one-dimensional contact
process was proven by Schonmann.'? Moreover, he proved that this does
not happen in the subcritical case. Mountford® proved that for the
d-dimensional supercritical contact process, restricted and initially fully
occupied, the suitable normalized time to die out converges to an exponen-
tial random variable of mean one as N tends to infinity.

The goal of this paper is to show that the supercritical contact process
presents a metastable behavior in any dimension. This is done by proving
the property of thermalization for the d-dimensional case, i.e., when the
process is out of its equilibrium situation the temporal means stabilize
close to the expectation of the statistics of the trajectories in some fixed
probability distribution on the configurations of the system. Metastability
then follows from Mountford’s results'*’ on the time for the process to die
out.

This extension of the thermalization property to arbitrary dimensions
is derived from the fast loss of memory of the process, which we obtain
using some results from Bezuidenhout and Grimmett.' The concept of
loss of memory was implicit in ref. 1 and was later used in Galves er al.'®’
to study the asymptotic distribution of the time of first occurrence of an
anomalous density of particles in a large, fixed region of the space for the
supercritical one-dimensional contact process. Here we extend the concept
to establish our theorem.

The paper is organized as follows: In Section 2 we introduce the
notation to be used in this work and state the metastability theorem. In
Section 3 we prove general results about the loss of memory of the contact
process, which are used in Section 4 to prove the main theorem. In
Section 5 we prove that the phenomenon of metastability does not hold for
A<l ld).
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2. NOTATIONS AND RESULTS

We consider the contact process as being derived from a collection
of Poisson processes defined in the sites xeZ¢ as in the representation
introduced by Harris.® This representation enables us to couple contact
processes with different initial configurations. For a construction and proofs
of the existence and uniqueness of the process defined by the parameter A
see, for instance, Durrett'”’ and Liggett.'®

We use the notation {£7. (1): 120} to describe the process restricted
to I'ycZ? starting from the configuration ye{0,1}'%, ie, &7.(0)=n.
Restricted means that Poisson processes defined in I'}, are not considered.

Given n€ {0, 1} ¥ we define the hitting time of the trap state, i.e., the
empty configuration, starting from y by T} =inf{r>0: &7 (1) = &}. For
notational convenience we write {&”(¢): t >0} for the unrestricted process
and in this case for the initial condition ne{0,1}% we define T”
analogously.

We call f: {0, l}Z"—> R a cylindrical function if there is a finite set
4<=Z¢ such that f(n)=/f(nn4) for any configuration ne {0, 1} % The
support of f is defined as the smallest set of Z¢ which has this property and
write A( f) for this set.

Given a real number b>0, NeN, and a cylindrical function f, we
define the temporal mean of f with respect to the process {S7¥(1): 120},
as the measure-valued process {A;(s, f): s=0} given by

1 ps+b
A =3 SR dr

where s is the instant of the beginning of the masurement and & the time
interval of observation. We can now state the metastability theorem:

For any d>=1, A>1/(d), and a cylindrical function f, there is an
increasing sequence of positive real numbers {b(N, d): N > 1} such that the
process {Apy SE[T7X], f): s =0} converges in distribution, as N — oo,
to a Markovian jump process { A(s): s >0} defined by

v if s<T
A(s)’{(sg if s>7T

where T is an exponential random time of mean one, v is the extremal non-
trivial invariant measure of the unrestricted contact process, and J is the
Dirac d-measure concentrated in the empty configuration.
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3. LOSS OF MEMORY OF THE PROCESS

Forany 0<¢g<1 let

Ay, q)= {06{0, 1Y n(x)zq IFNI}

xeln

where |I'y| =(2N + 1)¢ is the cardinal of the set I'y.

In order to obtain our results we will consider contact processes with
different initial configurations, using an appropriate coupling established
when both processes are constructed in the same probability space
following the same collection of Poisson processes considered in the Harris
representation.

Lemma 3.1. Let d>1 and 21> 2{(d). For any 0<g¢<1 there are
L=1L(d A)eN and c=c(d, 1) €(0, 1) such that, for every N = L and every
ne A(ly, q),

P(T"" =)= 1 —exp{—C‘Q(2N+ 1)11\1}

Proof. The case d=1 follows Theorem (3.29), p.303 of ref 8.
Suppose d> 1 and for re N\{0} fixed let D,={zeZ* |z,| <r, i=1,., d}
be a disc in Z¢.

Bezuidenhout and Grimmett'®’ have shown that there is a finite
disc D, =D and a positive integer L > r such that for all 2> 1 _(d) we have

[F"{éf’_,_.L]d-uxz survivesin [0, o)} =y >0

For Nz L and ne A(ly, q) fixed, we can find & #{<=nyny such
that

v [I'nl ¢
e s

where |{| is the cardinal of {, such that the sets x +(—L, L)~ ! x Z, when
xe(, are disjoint. Let x' for /=0, 1,..., || — | be an enumeration of the sites
of {, namely { = {x'en: I=0,.., |{| - 1}.

Note that there is a strictly lower bound, say p(d, A, r, h), for the
probability that at any time />0, there is a fully occupied disc D, + x' in
the process {&3, (1) 0<¢<h}, x'e(, constructed by the coupling
described before with the process {&"(¢): £>0}. We now show that there
is a lower bound for the probability of the event {£°(¢) survives in [0, ©)}.



Metastability of the d-Dimensional Contact Process 1229

Defining B, ,(x')=x'+(—L, L)*~'x Z, both processes
{E5an(0ie=0), (&5 (020}, I#m, X\ x"el

which are restricted versions of the process starting from 5 with the same
parameter 4> 0, have independent evolutions.

Denoting by {&%¢): 1>0} the unrestricted process starting at the
origin of Z9 we observe that for each x'e( the following inequality holds:

P{é';;L(xl,(t) survives in [0, o0)}
=P{£&3, 0(?) survives in [0, o0)}
= P{&5, (o)1) survivesin [0, o), &% (h) = D, for some 0 < h < ¢}

=yp(h,r,d, 2)>0

where the first equality follows from the translation invariance property of
the contact process and the second from the Markov property.

To complete the proof, note that from the attactiveness of the contact
process it follows that

{é};f“(_‘_,,(t) survives in [0, o)}
for any x'e( implies that
{&7°¥(1) survives in [0, 00)}
and by the construction of the process {.f';; Lh(8): 120} we have that

P{T"""™"=c0} = P{&%t) survives in [0, o0 )}

=P { U {f’,‘;f,_u_\.l)(t) survives in [0, oo)}}

I<g-1

=1 "{ [T P{&), (1) = for some t>0}}

<Kl -1
21— [ (I—yp(hr.d 1))
< -1

=1 —exp{ —yplh, r,d, 2y |{|}

r
>l—exp{—yp(/1,l‘,d,i) Fla }

(ALY~ '(2N +1)
=1—exp{ —cg2N+1)‘""}
where c=yp(h, r,d, A4L)' =€ (0,1). 1

822/83/5-6-28



1230 Simonis

The next lemma estimates the rate, at time ¢, of the loss of memory of
the process as N grows.

Lemma 3.2. Letd>=1and 1>A{d). Forany 0<¢g<1, N>1, and
n and e A(Iy, q), there are a=a(d, A)e[], o), c=cl(d, 4, g)e(0, w0),
and C=C(d, A)e[1, o) such that for every 7 = aN,

P(E"(1)=¢t)in Ty) 21— C |Ty| exp{ —et}

Proof. 1t is enough to prove the result for ne A(I'y, q) and { = Z°.
Given r>1, it follows from Lemma 3.1 that there are positive con-
stants L and ¢', independent of N, such that

P(Iye[ —Lt, L] n(y)=1, T =)
=P(T70 Ll = o)
>1—exp{—c'q(2Lt+ 1)~}
Since (2Lt +1)Y"'> 14 (d—1) Lt, we obtain that
1—exp{ —c'q2Lt+ 1) "} = 1—exp{ —'q(1 +{d—1) L)}
=1—exp{ —c'q} exp{ —c'q(d—1) Lt}
=1 —exp{—c'qt}

Note that in the case d=1 the inequality above i1s a consequence of

Theorem (3.29), p. 303, of ref. 8.
Define for any yeZ‘ and ¢>0 the coupled region K=

EX() u(ézd(t))". We have, for any > 1 fixed, that
{Iye[—Lt, Lt] n(y)=1,T = o}

c U {&(n=¢Fnin Ky, T =o0)

yey

c{EUnN = (yin My} u{ly ¢ K}, T =0}

where the last set is for one choice y with the smallest norm.
Therefore

P(E"(t) =& (1) in T'y)
>1—exp{—c'qt} —P(I'y ¢ K2, T = 0)
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Since
P(ry ¢ K}, TV =00) <U {x¢ K}, T‘—oo}>
xely
it follows from the invariance by translations of the contact process that

P(ry ¢ K), T"=o0) = P( U {x¢K?,T°=oo}>

xely+yr

S|Fy| P(x¢ K, T =o0)

Durrett and Griffeath®’ obtained some results which, after the break-
through of Bezuidenhout and Grimmett,'"’ are valid for the unrestricted
d-dimensional contact process. We use here a result which ensures that
there are positive constants «, ¢, and C, independent of N, such that

P(x¢ K, T* =) < Cexpf{ —ct)} for |x|<at (3.1

Note that ||x|| < Nd for all xe Iy, and therefore we have

_ Nd
P(ry ¢ K!, T"=w)<|Ty| Cexp{ —a1}  forall 1>—
a

Consequently, there are constants «, ¢, C such that

P& =E%(1)in I'y)
=1 —exp{—c'qt} — |y Cexp{—ét}

Nd
21—yl Cexp{—ct}, for all t>7

where ¢=max{c'q,¢} e(0,00) and C=max{C 1}€[l, ©). Putting
a=max{d/a, 1} €[1, o0), we get the desired conclusion. |

4. PROOF OF THE THEOREM

Following the method employed by Durrett and Schonmann,'®
Mountford'® has recently shown the following result.

Theorem (Mountford). Let d>1 and 1> A.(d); we have

I'y
I'n

E[TH

<, EXP(1) when N-— o
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This result is proven using the method introduced in ref 4 together
with ideas on orientated percolation in Durrett.'"

To state the thermalization of the process, we start by defining, for
each y e Z9 the translation operators on cylindrical functions by

(T, ) =f(n'"), where n"(x)=n(x—y)
Given a cylindrical function f and N, Le N, with N> L, let
Linn(L)={yeZ% A(z,f)c[-N+L N-L]"nZ

and write E,(f)={ f dv to denote the expectation of f with respect to v.

Theorem 4.1. Let d>1 and A> 4.(d). Then there is an increasing
sequence of positive real numbers {b(N, d), N> 1}, such that:

(1) We have

b(N d)

lE[T ] -0 when N-o w

(i) For any e>0 and a cylindrical function f, there 1is
L=L({d, A ¢ f)eN such that

P( max max |Ab(N,,, Ib(N,d), 1, f)—E(f)|>¢e)—0
0<IIE<ZF~ velyugnL) ’

when N — oo, where
Fy=max{leN: Ib(N,d) < T7¥}.
Proof. Since T,Cx is almost surely finite, for any real, positive number
b(N, d), Fy is a well-defined and finite random variable with values in N.

If b(N, d) satisfies condition (1), if follows from Mountford’s theorem
that

P[Fy=0]-0 when N — w0

Let us now assume that (b(N, d), N=1) is a sequence satisfying (i).
For £> 0, f cylindrical, ke N, and ye Z¢ given, consider the events

BAN\ - [lAb(N d) kb(N, d), r_vf) - [Ev(f)l >6]
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Then, for any m>=1, L=0,

PlEzl 1 w::,,.)f]

Igsk<Fy yelynniLl)
Jj—1

=,§ [IP[FN=j] —P [ Uu U B, F”=j”

k=1 yelynn(L)

N\
N

n Jj—1
P[1 FNgm]—ZP[U U Bif',,,FN=jJ

J=1 k=1 yvelysnnL)
2P[1<Fy<sm]

m

— Y j2N+1)* max  max P[B; ., Fy=j]
=1 | <k<j velyynL)
2P[1SFysm]

—m*(2N+1)"max max  max P[By .. Fy=j]1 (42)

izl 1<sk<j velynnl)

For any ne{0, 1} %, consider K” the set of coupled sites at time ¢,
defined as before by

K= {&0uEZ(n)} =1 v ()
xeyn
We have, for yel, , n(L), that the event
[K:o[=N+L N—L]“nZ"]
for some e[ —N+ L, N~ L]Yn Z% implies (is a subset of)

[, f(ER)) =1, f(EF(1))]

Choose L=L(d, A, & f)eN such that 3ze[-N+L, N-L]“nZ¢
with 7 = co. Fixe one z with the smallest norm. Then we have for 1 < T'7%,
k<j, yely, n(L), and N> L the following inequality:

PLBY,. Fy=/]
=PLl4Yna(kb(N, d), 7, /) —E(f) > & Fy=/]

1 (ke + 1) b(N.d)

<P [ ‘AzN,,,,(kbw, Do) =N D omar

ryf(éz"(t))dt] >§ or
1 th+1) BN,
| 2

_ 2 ~ s
b(N, d) T, f(E5(0) dr IE‘,(f)‘> ,Fy J]

kb(N.,d)
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Trajectory by trajectory on [Fy=j], if k<, yel,, n(L), and

N> L, we have
1 (k+ 1) b(N.d)

N _
Apw.afkb(N, d), 7,.f) b(N, d) Jrpin.ay

T, (&% (1) dt

2| fI petwen
SHN, d) f {ry_ie K. Timx 4, Where [ f] = ,,S;“;.,f(’“

0

Defining the events
thk+ 1) bIN.d)

1
cl o= |———
o [ lb(N, d) Lm}\',zn

b(N.d}
ve | IS .
[— lﬁrA'—/.¢Kf.T:=V_}d[>Z

o, SET(0) di — [E.,(f)‘ >§]

T LB(N,d) o
CY=Co
and as P[ CY ,] is independent of y, we have
P[BY .. Fy=j1<P[C}1+P[Dy" ]

Inequality (4.2) asserts that condition (ii) is true when condition (i} is,
and furthermore we can find a sequence {m(N, d), N> 1} such that:

(a) P[ISFy<m(N,d)]—-1
(b) m*N, d)(2N + 1)”(max,\,21 PLCN] +max, P[DY 1) -0

when N — oo.
Condition (a) may be written as

PLT/<m(N,d)b(N,d)]—>1  when N- o
and using Mountford’s theorem, we can write it as

m(N, d) b(N, d)
- N
E[T IC::: — 0 when )

Using the notation

¥ (BN, d))=max P[CY¥]+ max P[D}Y*]
k=1 k=1
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and including part (i) of the theorem, all we have to do now is to find
LeN and two sequences such that, as N — oo:

(a) [m(N, d)b(N, d)]/E[ Tf’;;] — 0.

(b) m*(N, d)2N + 1)’y (b(N, d)— 0.

(c) BN, d)E[T7]—0.

It is easy to show that

lim (E[TR]) "' 2N+ 1) =0
N— o :

Therefore if W, (b(N, d)) < C|T'y|/B(N, d), where C=Cle, f) is a positive
constant, we have that

I'; 1/5
m(N, d) =[ ELT ]

(2N + 1)
b(N,d)=(E[T21)”'°(2N + )**

are solutions of (a)—(c) above, concluding the proof. We thus only have to
show the next proposition.

Proposition 4.3. Letd>1, 2> J(d). For any ¢>0 and f a cylin-
drical functions, then there are L=L(d, A, & f)>0, N=N(e, f)> L, and
C=Cle, f) such that

CITw

!PL(b(N,d))Sb(N* )

forall N=N

Proof. First we prove that there is a positive constant C, = C,(g, f)
such that

C, ITA|
N < 1 N
max PC) <y a)

For k €N, consider the random variables
. |1 kb 24 :
Xk=)5f SEED) di—E(f)
kb

We have for k=1 and b(N, d)>aN, where a=a(d, L)e[1, o) is
given by Lemma 3.2, that
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[E[XZ(NJIJ]
2 (k+1)bIN.d} d , .
b(]l\'/’fg) L-h(N 1) P(EZ (1) #&(1) in A(f)) dt

20 f1 tk+DoNd i
—_—— P t n A d
b(N, d) wa‘“ Lo_”zd (EZ(1Y £ Et) in A(S)) v(dn)

Applying Lemma 3.2, it follows that there are ¢ =c(d, 1) € (0, o0) and
C=C(d, A)e[1, o) such that

2 (k+ DbIN.d)
—Iﬂj C|Iy| exp{ —ct} dt

bIN, d) ke

201 f1 C|Ty
= b(N,d)c

IE[XZ(N"”] <

2C" AN 1w
exp{ —kcb(N, d)} BN
for any k = 1, where C' = C/c.

Using the Markov inequality, we have that

ZE[X?N'(”]

€
max P(C}) = max P <XZ‘N"” >;> < max
2) k= €

k=1 k=1

LAC NN _ Cole £) 1]

eb(N, d) b(N, d)

where C,=C\ (¢, /)=4C"| f|l/e.

The Dy"" terms can be controlled is an analogous way. For this,
choose L=1L(d, ¢, f) large enough such that there is e[ —N+ L,
N— L)Y 7" with T7 = 0. Fixe one - with the smallest norm.

For ke N, let

b,
Y b= J lgr,\ Lc:K‘T—/}dt

It follows that

1

. ; B(N.d) _ =
E[ Y2 ).L]=b L P(Fy_, ¢ K, T°=c0) dt

b(N,d) i )
=b(N,dL P( U {«\¢K,,T=oo}>dt

xeln_t
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The translation invariance property of the contact process implies that

MNALL 1 BUN.d) 0 .
ELYpt] =g d)jo P U {x¢K°T'=o0) )dr
> xez+In-1t

So we have, for some constant a e (0, oo) given, that

\Fv-tl/a
E[ YII:(N.(I).L]=b(A1/ 7 J‘O L P( U {x¢]{?, T° = OO})(I’I

Nes+Tn-t
1 Jb(N.d) P( U (x¢ KO T }>d
4+ X , = t
b(N, d)iry_ xez+Ty_y '

Using (3.1), there are ae€ (0, o), c€(0, ), and Ce (0, o0), such that

lFN—L{ er—L{ bUN.d) -
E Yl?(N«d)AL < C _ It
LY <N T v, ) j.m-,,./(, expt — i} «
[Fy_r| | CITy] { IFN_LI}
“ab(N, d) + ch(N., d) ex a
[Ty CIfwl _C Ty
“ab(N,d)  @(N,d) " b(N,d)

where C' =¢' =2 max{1/a, C/¢}.
It follows that

Ny _ ybnae 5 &
max P(D") rg:f“’(ﬁfﬂ k >4>

ELYRM-214 )1l
&

< max
k=1

< Cale, )Tyl
b(N, d)

where  C,(e, f)=C'4|fl|/e. Putting C=max{C,, C,}, the result
follows. |
5. SUBCRITICAL CASE

We prove now that the theorem of Mountford is false for A <2 .(d).

Theorem 5.1. Letd>1and A</ (d). For any sequence {yy: N>1},
T?’z/y,v does not converge to an exponential random variable.
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Proof. Our method is essentially that employed for Theorem 6 of
Schonmann.?’
We show that

P(TA<tInN) -0 as N-— if r<1

and that there exists K= K(A)> 1 such that
P(T/<tInNY)—1 as N—ow if >K

The first part follows from the fact that

T>Sp,=max %y
xely

where %7 is the instant of the first occurrence of the Poisson process with
rate one defined in xe Z% So

P(T!¥ < tln N < P(Sp, <t In NY)
=[1—exp{—1in Ny 2N+

1 (2N+1)d Q2N+ 1)¢
[ QN+1D7 N ]

as N- oo if t < 1.
To prove the second part, we use the result (1.13) in Bezuidenhout
and Grimmett.!'> It defines the distance function

d
S(x, 1), (y, )y =lt—s|+ > |x;—yi for (x,1),(y,s)eZ'%xR

i=1

For r>0 the ball S(r)={neZ'xR: §(0,n)<r} and its surface 3S(r) =
{reZxR: 80, ) =r} are also defined. Considering those definitions, it is
then proved that for 4 </ (d) there exists ¥y =/(A) >0 such that

P{0 — 0S(r)} <exp{—ry(2)} forall r

where 4 — B means that there exist «e A and be B such that ¢ and b are
in the same connected component of a (random) graph lying entirely
within RY*!. See Section 2.1 of ref. 12 for details, which include the topol-
ogy used and the definition for an event to be determined by the configura-
tion inside a region of RY*!,
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For 1> K=max{1, [y(1)] "'} we have that
P{T/¥>1ln N} <P{&"™(Kln N‘) # &}
< |yl P{&%(K In N) # &}
< [Ty P{0— 8S(KIn N)}
< |Tnl exp{ —(KIn NY) y(4)}

£l
=W—>O as N-ow I
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